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Abstract 

 
Goal-oriented modelling is one of the most important 
research developments in the RE field. This paper con-
ducts a systematic analysis of the visual syntax of i*, 
one of the leading goal-oriented languages. Like most 
RE notations, i* is highly visual. Yet surprisingly, there 
has been little debate about or modification to its 
graphical conventions since it was proposed more than 
a decade ago. We evaluate the notation using a set of 
evidence-based principles for visual notation design. 
The paper identifies some serious flaws in the i* visual 
notation together with some recommendations for im-
provement. A broader goal of the paper is to raise the 
level of debate and stimulate discussion about visual 
representation in RE research.  

1. Introduction 
1.1 Visual representation: an important but 

neglected issue in RE research 
Visual notations play a critical role in requirements 
engineering (RE), and have dominated RE practice 
from its earliest beginnings (e.g. the “structured tech-
niques” in the 1970s). An RE method without a visual 
representation is almost unheard-of. Visual notations 
play a particularly critical role in communicating with 
end users and customers, as diagrams are believed to 
convey information more effectively to non-technical 
people than text [1].  

It is therefore surprising that so little research atten-
tion has been given to visual representation in RE. 
Evaluations of RE notations tend to be conducted 
based exclusively on their semantics, with issues of 
visual syntax rarely mentioned. Also, in designing no-
tations, decisions about graphic representation tend to 
be made in a subjective way, without reference to the-
ory or empirical evidence, or justifications of any kind 
(design rationale) [20, 30]. 

One explanation for the lack of attention to visual 
aspects is that methods for analysing visual representa-
tions are less mature than those available for analysing 
verbal or mathematical representations [19, 24, 39]. 
Another explanation is that researchers consider visual 
syntax to be relatively unimportant: a matter of aesthet-
ics rather than effectiveness [20]. This view is contra-
dicted by research in diagrammatic reasoning that 
shows that the form of representations has an equal, if 
not greater, influence on their effectiveness as their 
content [23, 36]. Empirical research in RE contexts 
confirms that the graphical form of notations signifi-
cantly impacts their effectiveness for both problem 
solving and end user communication [27, 32]. 

1.2 Goal-oriented modelling 
Goal-oriented modelling is one of the most important 
research developments in the RE field, which changes 
the focus from what and how (data and processes) to 
who and why (the actors and the goals they wish to 
achieve). i* is one of the leading goal modelling lan-
guages: the paper proposing it [42] was awarded the 
title of “Most Influential Paper of the Past 10 Years” at 
RE07. It competes with the KAOS [11] for the title of 
the leading goal-oriented modelling notation. 

Like most RE notations, i* is a visual language: al-
most everything in the language has a graphical repre-
sentation and it primarily relies on diagrams (Strategic 
Dependency Diagrams and Strategic Rationale Dia-
grams) to document and communicate requirements. 
Like most RE notations, i* lacks explicit design ration-
ale for visual representation choices: graphical conven-
tions are defined by example, without any explanation 
for why they were chosen.  

1.3 Objectives of this paper 
This paper conducts the first systematic analysis of the 
i* visual notation, with an aim towards improving its 
effectiveness in practice, especially for communication 
with end users. In this spirit, rather than simply point-
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ing out deficiencies in the notation, where possible, we 
suggest ways of overcoming these problems. We be-
lieve that research attention to the visual aspects of i* is 
long overdue: there has been little debate about or 
modification to the i* visual syntax since it was origi-
nally proposed more than 10 years ago. The lack of 
progress in this area represents a potential barrier to its 
usability and adoption in practice. A second goal of this 
paper is to stimulate discussion about visual represen-
tation issues in the RE community. 

2. Theoretical Basis 
One reason for the lack of attention to visual aspects in 
RE research is the lack of accepted principles for 
evaluating and designing visual notations. In the ab-
sence of such principles, evaluations can only be car-
ried out in a subjective manner. 

2.1 A Theory for Visual Notation Design 
The analysis in this paper is based on a recently devel-
oped theory of visual notation design [30], which de-
fines a set of nine principles for designing cognitively 
effective visual notations, (Figure 1). The theory is 
called the Physics of Notations as it focuses on the 
physical (perceptual) properties of notations rather than 
their logical (semantic) properties as is more com-
monly the case. 
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Figure 1. Principles for Cognitively Effective Visual 

Notations 

Importantly, these principles are evidence-based: they 
were synthesised from theory and empirical evidence 
from a wide range of fields. They also rest on an ex-
plicit theory of how visual notations communicate. 
These provide a scientific basis for evaluating and de-
signing visual notations, which has previously been 
lacking in the SE field. Rather than defining the princi-
ples here, they are defined as they are applied in the 
analysis (Section 3), so the reader (i.e. you) does not 
have to take in a lot of new material and remember it 
(in accordance with principles of just in time learning). 

2.2 The “Visual Alphabet” 
One aspect of the theory that is important to understand 
the analysis in Section 3 is the concept of visual vari-
ables. There are 8 elementary visual variables which 
can be used to graphically encode information [4]. 
These are categorised into planar variables (the two 
spatial dimensions) and retinal variables (features of 
the retinal image) (Figure 2). The visual variables de-
fine a visual alphabet for designing visual notations: 
notation designers can create an almost unlimited 
number of graphical symbols by combining the visual 
variables together in different ways. 

TextureOrientationBrightnessVertical
Position

ColourSizeShapeHorizontal
Position

RETINAL VARIABLES
PLANAR

VARIABLES

0

90

45o

o

oHighMediumLow

Red Green Blue

Small

Medium

Large

 
Figure 2. Visual variables [4] 

3. Analysis and Results 
This section presents the results of a comprehensive, 
symbol-by-symbol analysis of the i* visual notation. 
The findings for each principle are presented in a sepa-
rate subsection (references to principles are indicated 
in the text by underlining; new terms by bolding). Due 
to space limitations, only the results for 6 of the 9 prin-
ciples are reported in this paper. 

3.1 Unit of Analysis  
The first issue is to choose a particular source of i* to 
use as the basis for our analysis: there is no definitive 
source as there is, say, for UML. We chose the i* Guide 
[17] as our source for three reasons: 
• It is web (Wiki) based so is the most up-to-date 

source. This represents the “living” version of the 
language, whereas the most often cited sources of i* 
(Yu’s original PhD thesis and his RE97 paper [41, 
42]), represent snapshots at a point in time. 

• It represents a superset of the conventions defined 
in most other sources, as the language has ex-
panded over time. It therefore provides the most 
complete source. 

• It provides the most detailed description of the i* 
visual syntax.  

3.2 Semiotic Clarity 
The Principle of Semiotic Clarity states that there 
should be a 1:1 correspondence between semantic con-
structs and graphical symbols used in a notation. When 
there is not a 1:1 correspondence, the following 
anomalies can occur (Figure 3): 
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• Symbol deficit: when a construct is not represented 
by any symbol 

• Symbol redundancy (synography): when a single 
construct is represented by multiple symbols 

• Symbol overload (homography): when a single 
symbol is used to represent multiple constructs 

• Symbol excess: when a symbol does not represent 
any construct. 

Semiotic Clarity maximises the expressiveness (by 
eliminating symbol deficit), precision (by eliminating 
symbol overload) and parsimony (by eliminating sym-
bol redundancy and excess) of visual notations. 

Graphical 
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symbol 
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?
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Figure 3. Principle of Semiotic Clarity 

Evaluating the semiotic clarity of a notation involves 
conducting a mapping between its metamodel and 
symbol set (visual vocabulary). This is problematic as 
the i* Guide does not define an explicit metamodel. To 
conduct the analysis, we reverse engineered a meta-
model (or more precisely, a metaclass hierarchy) from 
the text, drawing on previous research in this area [2, 5, 
6]. However, without a metamodel, semiotic analysis 
can only be conducted in an approximate manner. A 
clear recommendation from this research is that i* 
needs an explicit metamodel, represented in standard 
format (e.g. using MOF [33]). While Yu’s PhD thesis 
[41] includes a metamodel, it is represented in non-
standard format and has not been updated to reflect 
subsequent changes to the language. 

Symbol redundancy (synographs) 
There is only one case of symbol redundancy in i*: two 
different symbols can be used to represent Beliefs 
(Figure 4).  

Belief 
(alternative)

Belief

 
Figure 4. Symbol redundancy (synographs) 

No explanation is given for why a choice is provided, 
which is not provided for any other construct. Symbol 
redundancy places a burden of choice on the language 
user to decide which symbol to use and an additional 
load on the reader to remember multiple representa-
tions of the same construct. To resolve this, one of the 
symbols should be chosen to represent the construct 
and the other removed from the notation. As we will 
see, other principles provide clear guidelines for choos-
ing between the two alternatives. 

Symbol overload (homographs) 
This is the worst type of anomaly as it results in ambi-
guity and the potential for misinterpretation [16]. It 
also violates one of the basic properties of the symbol 
system of graphics: monosemy – this means that all 
symbols should have a single meaning, defined in ad-
vance and independent of context [4]. Symbol overload 
is a serious problem in i*: most of its symbols are 
technically homographs. All of these occur among rela-
tionship types: there are 27 different types of semantic 
relationship but only 5 visually distinct graphic links2 
(Table 1). This means that, on average, each graphical 
link has to represent more than 5 different types of 
relationships. The level of symbol overload is primar-
ily due to the use of textual differentiation. Labels are 
used to distinguish between 6 types of Actor Relation-
ships, 9 types of Softgoal Contributions and 9 types of 
Softgoal Correlations3. Contextual differentiation is 
also used: Actor Relationships and Contribution Rela-
tionships use the same graphical link but connect dif-
ferent types of elements. Symbol overload is a com-
mon (but suboptimal) way of dealing with excessive 
graphic complexity (Principle of Graphic Economy).  

Table 1. Symbol overload in i* 
Graphic link Semantic relationship Overload

Actor association (6 types) 

Contribution (9 types) 
14 

Correlation (9 types) 8 

Decomposition 0 

Means-end 0 

D Strategic dependency 0 

5 27 22 

Symbol excess and symbol deficit 
There is no symbol excess or symbol deficit in i*. 
However, absence of symbol deficit is not necessarily a 

                                                           
2  Two symbols are visually distinct if they have a different value 

for at least one visual variable. This is based on the concept of 
visual distance (see Perceptual Discriminability). 

3  Alternatively, the different types of contributions and correlations 
could be considered as properties of relationships (strength and 
direction) so would be considered under Visual Expressiveness. 
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good thing as this is a useful technique for keeping 
graphic complexity manageable. Currently, i* has ex-
cessive graphic complexity, especially for a notation 
intended for use in early analysis (see Principle of 
Graphic Economy). 

3.3 Perceptual Discriminability 
Perceptual Discriminability refers to the ease and accu-
racy with which different symbols can be differentiated 
from each other. Accurate discrimination between 
symbols is a prerequisite for accurate interpretation of 
diagrams [39]. Discriminability is determined by the 
visual distance between symbols, which is measured 
by the number of visual variables on which they differ 
and the size of these differences (number of percepti-
ble steps). In general, the greater the visual distance 
between symbols, the faster and more accurately they 
will be recognised [40]. If differences are too subtle, 
errors in interpretation can result. Requirements for 
discriminability are much higher for novices than for 
experts [7].  

Discriminability of Shapes 
Of all visual variables, shape plays a privileged role in 
perceptual discrimination, as it represents the primary 
basis on which we classify objects in the real world. 
This means that more than any other variable, shapes 
used to represent different constructs should be clearly 
distinguishable. Figure 5 shows the different types of 
nodes used in i*. All are 2 dimensional geometric 
shapes, with sometimes only very subtle differences 
between them. These differences are likely to be di-
luted even further when diagrams are drawn by hand. 

RoleAgentActor Position

Softgoal Goal Task

Belief 
(alternative)

Belief

Resource

Actor 
boundary

 
Figure 5. Node types in i* 

In particular, the shapes used to represent Goal and 
Belief are highly similar. This provides a strong reason 
to use the alternative symbol (cloud) for Beliefs to re-
solve the problem of symbol redundancy (Semiotic 
Clarity). A similar problem exists between Agents and 
Roles: the difference between the symbols is very sub-
tle (a straight or curved line at the top or bottom of the 
symbol) and not at all intuitive. 

Because of the privileged role of shape in object 
recognition, differences in shape tend to be interpreted 
as differences in kind. For this reason, the same or 
similar shapes should be used to represent the same or 
similar constructs. This principle is violated where one 
of the subtypes of Actor (Position) is represented by a 
shape from a different shape family. To avoid giving 
misleading impressions about the relationship among 
these constructs, similar shapes should be used to rep-
resent all actor subtypes. A possible solution to this 
problem is discussed under Graphic Economy. A simi-
lar issue exists with Goals and Softgoals: shapes from 
different families are used to represent these concepts 
when Softgoal is a subtype of Goal (or in TROPOS, 
Hardgoal and Softgoal are specialisations of an abstract 
metaclass Goal [6]). A better solution would be to use 
the same shape with a secondary visual variable to 
distinguish between them (a possible solution to this 
problem is discussed in Perceptual Directness). 

Strategic Dependencies 
Strategic dependencies are represented by lines with 
the letter “D” attached to each side of the dependency 
(Figure 6). The orientation of the letters defines the 
direction of the dependency. This convention is one of 
the most distinctive (and peculiar) characteristics of the 
i* visual notation and makes i* diagrams almost imme-
diately recognisable. However, it is not particularly 
effective as a graphical representation technique: 
• The shape of the letter “D” is too symmetrical, 

making it perceptually difficult to identify the di-
rection of the dependency. The fact that “D”s are 
attached to both sides of the dependency exacer-
bates this (e.g. compare Figure 6 and Figure 7).  

• Using “D”s on both sides of each dependency cre-
ates visual noise: i* diagrams are unnecessarily 
cluttered by the number of “D”s.  

Actor 1 Actor 2

Softgoal 
dependency

Goal 
dependency

Task 
dependency

vulnerability commitment

Resource 
dependency

 
Figure 6. Strategic Dependencies in i*: how many 
vulnerabilities does each actor have? Conscious effort is 
required to determine the orientation of the “D”s. 
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Dependencies could be represented more clearly using 
conventional arrows, making sure to use a different 
type of arrow to those already used in i* (Figure 7). 
This resolves all the discriminability problems identi-
fied above and also supports Perceptual Directness as 
arrows are universally understood as a symbol of direc-
tionality dating back to primitive times [14, 37] 
whereas the “D”s always require explanation to new 
users. 

Actor 1 Actor 2

Softgoal 
dependency

Goal 
dependency

Task 
dependency

vulnerability commitment

Resource 
dependency

 
Figure 7. Strategic Dependencies (suggested 
improvement): how many vulnerabilities or commitments 
does each actor have? This can be easily determined by the 
presence or absence of arrowheads. 

Textual differentiation 
Textual differentiation is commonly used in UML to 
distinguish between relationship types. However, this 
is not a graphic design practice that should be emu-
lated, as it is less cognitively effective [31]. As dis-
cussed under Semiotic Clarity, textual differentiation 
results in symbol overload: symbols that are differenti-
ated only by labels have zero visual distance and are 
technically homographs. It also reduces discriminabil-
ity as it relies on slower, sequential, cognitive proc-
esses [31]. To maximise discriminability, symbols 
should be differentiated using visual variables so that 
differences can be detected automatically using percep-
tual processes.  

i* uses textual differentiation of relationships to an 
even greater extent than UML: around 90% of relation-
ship types are differentiated in this way (see Figure 8 
for an example). Textual differentiation of symbols is a 
common symptom of excessive graphic complexity, a 
problem that i* and UML both suffer from: however 
there are better ways of dealing with this than resorting 
to such measures (Graphic Economy).  

 
Figure 8. Actor relationships in i* [17] 

Labels play a critical role in diagrams, as they are used 
to differentiate between symbol instances (tokens) 
and define their correspondence to the real world do-
main. Using labels to differentiate between symbol 
types (language level) rather than symbol instances 
(diagram level) therefore confounds their role in dia-
grams. It also precludes the use of user-meaningful and 
domain-relevant labels for relationships. This is not to 
say that text should never be used in visual notations. 
Text can be usefully used for redundant coding, to 
reinforce and clarify meaning (Principle of Dual Cod-
ing), but should never be used as the sole basis for dis-
tinguishing between symbols. 

3.4 Complexity Management 
Managing complexity is an important issue in RE [9, 
22] and also in visual representation: a well-known 
problem with visual notations is that they do not scale 
well [10]. It is especially important for notations de-
signed for communication with end users to have ef-
fective complexity management mechanisms as non-
experts are less equipped to deal with complexity. Cur-
rently, i* lacks effective complexity management 
mechanisms, which means that problems must be rep-
resented as single monolithic diagrams, no matter how 
complex they become (Figure 9). Without this, i* 
stands little chance of being adopted in industrial pro-
jects, where complexity management represents one of 
the greatest challenges [12, 15]. One of the few empiri-
cal evaluations of i* [13] identified this as one of its 
most serious limitations in practice. 

 
Figure 9. Complexity Management: i* lacks complexity 
management mechanisms (diagram from [41]). 
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To effectively represent complex situations, visual no-
tations need to provide mechanisms for modularising 
and hierarchically structuring diagrams. Experimental 
studies show that this can improve end user under-
standing of RE diagrams by more than 50% [29]. 
DFDs provide one of the earliest examples of how to 
use such mechanisms to manage complexity of dia-
grams, which may partly explain their remarkable lon-
gevity in practice despite their well-known semantic 
limitations. UML Statecharts and Activity Diagrams 
also provide examples of modularisation and hierarchi-
cal structuring in visual notations. 

i* currently lacks modularisation mechanisms of any 
kind. It provides limited hierarchical structuring (Stra-
tegic Rationale and Strategic Dependency diagrams 
define two levels of abstraction), but to be most effec-
tive, multiple levels of decomposition should be pro-
vided depending on the complexity of the underlying 
model.  

3.5 Perceptual Directness 
Perceptual directness refers to the use of graphical rep-
resentations whose appearance suggests their meaning. 
While Perceptual Discriminability simply requires that 
symbols be different from each other, this principle 
requires that they provide clues to their meaning. Per-
ceptually direct representations reduce cognitive load 
through built-in mnemonics: their meaning can be ei-
ther perceived directly or easily learnt [35]. Such rep-
resentations speed up recognition and improve intelli-
gibility, especially to naïve users [7, 27].  

i* currently makes very little use of perceptual direct 
representations. This is surprising for a notation in-
tended for early analysis, given the well-known advan-
tages of such representations for communicating with 
novices. Most symbols in i* are abstract geometrical 
shapes that don’t convey anything about the constructs 
they represent: their meaning is purely conventional 
and must be learnt. Ironically, the only exception is a 
synograph: the cloud (the alternative symbol for Be-
lief) is a widely recognised convention  for expressing 
inner thoughts and feelings (the ubiquitous “thought 
bubble”). This provides another reason to choose this 
as the standard symbol for Belief to resolve the prob-
lem of symbol redundancy (Semiotic Clarity). 

The central constructs in i* are the four dependency 
types: Goals, Softgoals, Tasks and Resources. Cur-
rently, the symbols used for these are neither dis-
criminable nor mnemonic. Figure 10 shows some more 
perceptually direct symbols that could be used: the 
Task shape suggests motion or action, the (3D) Re-
source shape suggests a tangible object, while a foot-

ball is used to represent both Goals and Softgoals4. The 
dotted outline of Softgoals suggests “fuzziness”. These 
are not perceptually immediate in the strict sense that 
a novice reader could guess their meaning, but are 
more mnemonic than the abstract geometrical shapes 
currently used. They are also more discriminable and 
solve the problem of shape inconsistency identified in 
Perceptual Discriminability: Goals and Softgoals now 
have the same shape and are differentiated by a secon-
dary visual variable (brightness). 

ResourceTask Goal Softgoal

 
Figure 10. More perceptually direct symbols for 

dependency types 

Iconic (pictorial) representations 
Icons (mimetic symbols, pictographs) are symbols 
which perceptually resemble the concepts they repre-
sent [34]. Empirical studies show that replacing ab-
stract shapes with icons improves understanding of RE 
models by novices [27]. They also improve likeability 
and accessibility: a pictorial representation appears less 
daunting to novices than comprised only of abstract 
symbols [3, 35]. i* currently includes no iconic repre-
sentations which makes diagrams look rather dull and 
technical compared to other techniques used in early 
analysis. For example, UML Use Cases make limited 
use of icons while rich pictures [8] consist entirely of 
pictorial representations (Figure 11).  

 
Figure 11.  Rich pictures [8] 

An obvious way to increase the iconicity of i* diagrams 
would be to use stick figures for actors (à la Use 

                                                           
4  Cultural differences about the meaning of the word football would 

probably require “rugby” and “soccer” dialects of this notation. 
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Cases). This would increase their discriminability from 
other constructs (Perceptual Discriminability) but 
would make it much more difficult to distinguish be-
tween the different subtypes of actors (this is discussed 
further in Graphic Economy). A more radical proposal 
would be to replace the entire i* symbol set by an 
iconic vocabulary (à la rich pictures). 

3.6 Visual Expressiveness 
The visual expressiveness of a notation is defined by 
the number of different visual variables used and the 
range of values (capacity) used of each. This measures 
utilisation of the graphic design space. Using a variety 
of visual variables results in a perceptually enriched 
representation which maximises cognitive effective-
ness. Currently, i* uses only two visual variables: 
shape and brightness. It also uses only two levels of 
brightness (dotted vs solid lines) and a limited range of 
shapes (only abstract geometrical shapes): in particular, 
iconic and 3D shapes are not used which are generally 
more perceptually and cognitively effective [3, 21, 39]. 
This means that i* uses only a fraction of the graphic 
design space. 

Use of colour 
Colour is one of the most cognitively effective of all  
visual variables: the human visual system is highly 
sensitive to variations in colour and can quickly and 
accurately distinguish between them [25, 40]. How-
ever, if not used carefully, it can undermine communi-
cation. Currently, colour is used informally and incon-
sistently in i*. Most examples in the i* Guide use green 
fill for shapes and blue text for labels (e.g. Figure 12) 
but use of colour is not mentioned in the text, making it 
unclear whether this is part of the visual syntax.  

 
Figure 12. Use of Colour in i* (from [17]) 

Whether this is part of the visual syntax or not, it does 
not represent effective use of colour: 
• All symbols are the same colour, meaning that it 

plays no role in discriminating between symbols. In 
other words, colour communicates no information.  

• Coloured text on a coloured background reduces 
understanding of text and is the worst possible 
combination for both legibility and aesthetics [38]. 

This means that use of colour actively undermines 
communication. 

Colour could be used to improve both Visual Expres-
siveness and Perceptual Discriminability of i* by using 
different colours (in addition to shape) to distinguish 
between symbols (e.g. [26]). This is an example of 
redundant coding: where multiple visual variables are 
used in combination to discriminate between symbols 
(see Figure 16 for an example). Like text, colour 
should not be used as the sole basis for distinguishing 
between symbols as it is highly sensitive to differences 
in visual perception and screen/printing technologies. 

Textual encoding of information 
i* also uses text to define properties of relationships: 
for example different dependency strengths for strate-
gic dependencies (Figure 13). This is not an issue of 
Perceptual Discriminability as these represent proper-
ties of relationships rather than different relationship 
types.  

Actor 1 Actor 2
Committed 
Dependency

O

x

Open 
dependency

Critical 
Dependency

O

x

 
Figure 13. Textual encoding of dependency strengths: O = 
open, X = critical and no label = committed 

Where possible, information should be encoded 
graphically (i.e. using visual variables) to take maxi-
mum advantage of the power of human visual process-
ing. Figure 14 shows an example of how dependency 
strengths could be encoded graphically.  

Actor 1 Actor 2
Committed 
Dependency

Open 
dependency

Critical 
Dependency

 
Figure 14. Graphical encoding of dependency strengths: 
dotted lines for open dependencies (brightness), thick red 
lines for critical dependencies (size, colour). 

Because dependency strength is an ordinal property, 
ordinal visual variables need to be used to encode this 
information. Three additional visual variables are used 
in this representation: brightness (dotted lines for open 
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dependencies), size (thick lines for critical dependen-
cies) and colour (red for critical dependencies). 

3.7 Graphic Economy (less is more) 
Graphic complexity refers to the number of different 
symbols used in a notation: the size of its visual vo-
cabulary [32]. This is measured by the number of leg-
end entries required. This is different to visual com-
plexity as addressed by Complexity Management, as it 
relates to complexity at the type (language) level rather 
than at the token (diagram) level. Empirical studies 
show that graphic complexity significantly reduces 
understanding of RE diagrams, especially by novices 
[32]. The reason is that the human ability to discrimi-
nate between perceptually distinct alternatives (span of 
absolute judgement) is around 6 categories [28]: this 
defines an effective upper limit for graphic complexity. 
DFDs (Figure 15), ER diagrams and UML Use Case 
diagrams are all within this limit. 

Data storeProcess
External 

Entity
Data flow

 
Figure 15. Graphic Economy: DFDs have a very simple 
and highly discriminable visual vocabulary which supports 
usability and end user communication 

In contrast, i* exceeds this limit by an order of magni-
tude (almost 3 times). It has a graphic complexity of 
175, compared to 4 for DFDs and 5 for ER models and 
UML use cases. Such a level of graphic complexity 
would be a problem for any visual notation, but par-
ticularly for one intended for use in early analysis. 
Graphic complexity represents a major barrier to both 
i*’s usability and its effectiveness for communication 
with business stakeholders. There are three strategies 
for dealing with excessive graphic complexity:  

1. Reduce semantic complexity. The number of 
semantic constructs is a major determinant of graphic 
complexity as different constructs are usually repre-
sented by different graphical symbols. Reducing the 
number of semantic constructs requires asking some 
hard questions about the i* metamodel: for example, is 
it really necessary to distinguish between the various 
types of Actor (Role, Position, Agent)? For example, 
DFDs and Use Case diagrams also incorporate all these 
types of actors but don’t distinguish between them. 
Such questions are beyond the scope of this paper, 
which focuses on syntactic issues. 

2. Introduce symbol deficit. Graphic complexity 
can be reduced directly (without affecting semantics) 

                                                           
5  The graphic complexity of i* is artificially deflated by the high 

level of symbol overload. As discussed under Semiotic Clarity, 
symbol overload is a common, but cognitively ineffective, way of 
dealing with excessive graphic complexity. 

by introducing symbol deficit (Semiotic Clarity). This 
means choosing not to show some constructs in 
graphical form. Judicious use of symbol deficit is one 
of the most effective ways to reduce graphic complex-
ity. For example, the question could be asked: even if it 
is necessary to distinguish between Actors, Agents, 
Roles and Positions at the semantic level, do we need 
to distinguish between them at the syntactic (diagram-
matic) level? Removing this distinction would allow all 
4 constructs to be represented by the same symbol, 
which would reduce graphic complexity by 3 in a sin-
gle stroke. Further, if there is no need to distinguish 
between actor subtypes, an icon could be used instead 
of an abstract shape, thus increasing Perceptual Dis-
criminability and Perceptual Directness. 

As a more radical proposal, i* currently uses a large 
number of different contribution and correlation types. 
As well as adding to graphic complexity, they also 
greatly increase the visual complexity of i* diagrams 
(Complexity Management): inclusion of such relation-
ships can result in a web of lines which can obscure the 
dependency structure. We could ask the question: do 
these need to be shown on the diagram at all? This may 
seem to conflict with the recommendations of Visual 
Expressiveness, but not all information needs to be 
shown on the diagram: diagrams are famously good for 
representing some types of information but not others 
[18]. Part of the secret to using visual notation effec-
tively is knowing when not to use it [10, 35]. In par-
ticular, interactions can often be shown most effec-
tively using matrices (e.g. CRUD matrices, quality 
matrices). The advantage of matrices for such purposes 
is that they support more systematic analysis: a missing 
link on a diagram is not as obvious as a missing cell in 
a matrix. Removing contributions and correlations 
from the visual notation would reduce both graphic 
complexity and visual complexity (Complexity Man-
agement). Together with the removal of Actor subtypes 
(described above) and symbol overload (Semiotic Clar-
ity), this would reduce graphic complexity to manage-
able levels. 

3. Increase visual expressiveness. The human abil-
ity to discriminate between visual stimuli can be ex-
panded by increasing the number of visual variables on 
which the stimuli differ [28] (Visual Expressiveness). 
Using multiple visual variables to differentiate between 
symbols can increase the human span of absolute 
judgement in an (almost) additive manner.  

4. Conclusion 
This paper has conducted a systematic analysis of i* 
visual syntax, using a set of principles for cognitively 
effective visual notations. The results can be used to 
improve its usability and effectiveness (especially for 
communicating with end users) and remove some po-
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tential barriers to its adoption in practice. We have 
identified some serious flaws in the i* visual syntax, 
and in most cases, possible ways of resolving these 
problems. However, we don’t claim to have all the an-
swers and welcome ideas and suggestions (from re-
searchers or i* users) about alternative ways of address-
ing these issues.  

It is beyond the scope of this paper to propose a new 
visual notation for i*. However, as an example of what 
is possible and as a starting point for further discus-
sion, we propose a simplified visual vocabulary for i* 
based on some of the recommendations in this paper 
(Figure 16) (this is not a complete symbol set as it does 
not include relationship types). Note the mnemonic 
colour scheme used: 
• Tasks are yellow (like “sticky notes”) 
• Resources are green (like natural resources) 
• Softgoals are pink (suggesting softness) 

Belief

ResourceTask

Actor

Goal Softgoal

 
Figure 16. A simplified visual vocabulary for i* 

Compared to the existing symbol set (Figure 5), this is 
more: 
• Semiotically clear: it contains no synographs. 
• Perceptually discriminable: it uses a greater variety 

of shapes, redundant coding (which increases visual 
distance) and exploits family resemblances among 
shapes (i.e. Goal, Softgoal). 

• Perceptually direct: it uses shapes and colours that 
suggest the meaning of their referent concepts. 

• Visually expressive: it uses three visual variables 
(colour, shape, brightness) instead of only one 
(shape); also, a greater range of shapes (including 
iconic shapes and 3D shapes) are used. 

• Graphically economical: the size of the visual vo-
cabulary is reduced by eliminating symbol redun-
dancy and introducing symbol deficit. 

Such a symbol set would make i* diagrams more visu-
ally appealing and accessible for business stakeholders 
and would clearly differentiate them from most other 
technical-looking diagrams used in IT practice (of 
which UML is a prime example).  
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