
Improving the Effectiveness of Visual Representations in Requirements
Engineering: An Evaluation of i* Visual Syntax

Daniel L. Moody Patrick Heymans, Raimundas Matulevicius
Department of Information Systems & Change

Management, University of Twente, The Netherlands
d.l.moody@utwente.nl

PReCISE Research Centre
University of Namur, Belgium

phe@info.fundp.ac.be, rma@info.fundp.ac.be

Abstract

Goal-oriented modelling is one of the most important
research developments in the RE field. This paper con-
ducts a systematic analysis of the visual syntax of i*,
one of the leading goal-oriented languages. Like most
RE notations, i* is highly visual. Yet surprisingly, there
has been little debate about or modification to its
graphical conventions since it was proposed more than
a decade ago. We evaluate the notation using a set of
evidence-based principles for visual notation design.
The paper identifies some serious flaws in the i* visual
notation together with some recommendations for im-
provement. A broader goal of the paper is to raise the
level of debate and stimulate discussion about visual
representation in RE research.

1. Introduction
1.1 Visual representation: an important but

neglected issue in RE research
Visual notations play a critical role in requirements
engineering (RE), and have dominated RE practice
from its earliest beginnings (e.g. the “structured tech-
niques” in the 1970s). An RE method without a visual
representation is almost unheard-of. Visual notations
play a particularly critical role in communicating with
end users and customers, as diagrams are believed to
convey information more effectively to non-technical
people than text [1].

It is therefore surprising that so little research atten-
tion has been given to visual representation in RE.
Evaluations of RE notations tend to be conducted
based exclusively on their semantics, with issues of
visual syntax rarely mentioned. Also, in designing no-
tations, decisions about graphic representation tend to
be made in a subjective way, without reference to the-
ory or empirical evidence, or justifications of any kind
(design rationale) [20, 30].

One explanation for the lack of attention to visual
aspects is that methods for analysing visual representa-
tions are less mature than those available for analysing
verbal or mathematical representations [19, 24, 39].
Another explanation is that researchers consider visual
syntax to be relatively unimportant: a matter of aesthet-
ics rather than effectiveness [20]. This view is contra-
dicted by research in diagrammatic reasoning that
shows that the form of representations has an equal, if
not greater, influence on their effectiveness as their
content [23, 36]. Empirical research in RE contexts
confirms that the graphical form of notations signifi-
cantly impacts their effectiveness for both problem
solving and end user communication [27, 32].

1.2 Goal-oriented modelling
Goal-oriented modelling is one of the most important
research developments in the RE field, which changes
the focus from what and how (data and processes) to
who and why (the actors and the goals they wish to
achieve). i* is one of the leading goal modelling lan-
guages: the paper proposing it [42] was awarded the
title of “Most Influential Paper of the Past 10 Years” at
RE07. It competes with the KAOS [11] for the title of
the leading goal-oriented modelling notation.

Like most RE notations, i* is a visual language: al-
most everything in the language has a graphical repre-
sentation and it primarily relies on diagrams (Strategic
Dependency Diagrams and Strategic Rationale Dia-
grams) to document and communicate requirements.
Like most RE notations, i* lacks explicit design ration-
ale for visual representation choices: graphical conven-
tions are defined by example, without any explanation
for why they were chosen.

1.3 Objectives of this paper
This paper conducts the first systematic analysis of the
i* visual notation, with an aim towards improving its
effectiveness in practice, especially for communication
with end users. In this spirit, rather than simply point-

2009 17th IEEE International Requirements Engineering Conference

1090-705X/09 $25.00 © 2009 IEEE

DOI 10.1109/RE.2009.44

171

ing out deficiencies in the notation, where possible, we
suggest ways of overcoming these problems. We be-
lieve that research attention to the visual aspects of i* is
long overdue: there has been little debate about or
modification to the i* visual syntax since it was origi-
nally proposed more than 10 years ago. The lack of
progress in this area represents a potential barrier to its
usability and adoption in practice. A second goal of this
paper is to stimulate discussion about visual represen-
tation issues in the RE community.

2. Theoretical Basis
One reason for the lack of attention to visual aspects in
RE research is the lack of accepted principles for
evaluating and designing visual notations. In the ab-
sence of such principles, evaluations can only be car-
ried out in a subjective manner.

2.1 A Theory for Visual Notation Design
The analysis in this paper is based on a recently devel-
oped theory of visual notation design [30], which de-
fines a set of nine principles for designing cognitively
effective visual notations, (Figure 1). The theory is
called the Physics of Notations as it focuses on the
physical (perceptual) properties of notations rather than
their logical (semantic) properties as is more com-
monly the case.

Perceptual
Immediacy

Visual
Expressiveness

Graphic
Economy

Dual
Coding

Semiotic
Clarity

Manageable
Complexity

Perceptual
Discriminability

Cognitive
Fit

Cognitive
Integration

Figure 1. Principles for Cognitively Effective Visual

Notations

Importantly, these principles are evidence-based: they
were synthesised from theory and empirical evidence
from a wide range of fields. They also rest on an ex-
plicit theory of how visual notations communicate.
These provide a scientific basis for evaluating and de-
signing visual notations, which has previously been
lacking in the SE field. Rather than defining the princi-
ples here, they are defined as they are applied in the
analysis (Section 3), so the reader (i.e. you) does not
have to take in a lot of new material and remember it
(in accordance with principles of just in time learning).

2.2 The “Visual Alphabet”
One aspect of the theory that is important to understand
the analysis in Section 3 is the concept of visual vari-
ables. There are 8 elementary visual variables which
can be used to graphically encode information [4].
These are categorised into planar variables (the two
spatial dimensions) and retinal variables (features of
the retinal image) (Figure 2). The visual variables de-
fine a visual alphabet for designing visual notations:
notation designers can create an almost unlimited
number of graphical symbols by combining the visual
variables together in different ways.

TextureOrientationBrightnessVertical
Position

ColourSizeShapeHorizontal
Position

RETINAL VARIABLES
PLANAR

VARIABLES

0

90

45o

o

oHighMediumLow

Red Green Blue

Small

Medium

Large

Figure 2. Visual variables [4]

3. Analysis and Results
This section presents the results of a comprehensive,
symbol-by-symbol analysis of the i* visual notation.
The findings for each principle are presented in a sepa-
rate subsection (references to principles are indicated
in the text by underlining; new terms by bolding). Due
to space limitations, only the results for 6 of the 9 prin-
ciples are reported in this paper.

3.1 Unit of Analysis
The first issue is to choose a particular source of i* to
use as the basis for our analysis: there is no definitive
source as there is, say, for UML. We chose the i* Guide
[17] as our source for three reasons:
• It is web (Wiki) based so is the most up-to-date

source. This represents the “living” version of the
language, whereas the most often cited sources of i*
(Yu’s original PhD thesis and his RE97 paper [41,
42]), represent snapshots at a point in time.

• It represents a superset of the conventions defined
in most other sources, as the language has ex-
panded over time. It therefore provides the most
complete source.

• It provides the most detailed description of the i*
visual syntax.

3.2 Semiotic Clarity
The Principle of Semiotic Clarity states that there
should be a 1:1 correspondence between semantic con-
structs and graphical symbols used in a notation. When
there is not a 1:1 correspondence, the following
anomalies can occur (Figure 3):

172

• Symbol deficit: when a construct is not represented
by any symbol

• Symbol redundancy (synography): when a single
construct is represented by multiple symbols

• Symbol overload (homography): when a single
symbol is used to represent multiple constructs

• Symbol excess: when a symbol does not represent
any construct.

Semiotic Clarity maximises the expressiveness (by
eliminating symbol deficit), precision (by eliminating
symbol overload) and parsimony (by eliminating sym-
bol redundancy and excess) of visual notations.

Graphical
Symbols
(syntax)

Constructs
(semantics)

C1

C2

C3

C4

symbol
redundancy

symbol
overload

symbol
deficit

symbol
excess

?

?

symbolisation mapping (encoding)

denotation mapping (decoding)
Figure 3. Principle of Semiotic Clarity

Evaluating the semiotic clarity of a notation involves
conducting a mapping between its metamodel and
symbol set (visual vocabulary). This is problematic as
the i* Guide does not define an explicit metamodel. To
conduct the analysis, we reverse engineered a meta-
model (or more precisely, a metaclass hierarchy) from
the text, drawing on previous research in this area [2, 5,
6]. However, without a metamodel, semiotic analysis
can only be conducted in an approximate manner. A
clear recommendation from this research is that i*
needs an explicit metamodel, represented in standard
format (e.g. using MOF [33]). While Yu’s PhD thesis
[41] includes a metamodel, it is represented in non-
standard format and has not been updated to reflect
subsequent changes to the language.

Symbol redundancy (synographs)
There is only one case of symbol redundancy in i*: two
different symbols can be used to represent Beliefs
(Figure 4).

Belief
(alternative)

Belief

Figure 4. Symbol redundancy (synographs)

No explanation is given for why a choice is provided,
which is not provided for any other construct. Symbol
redundancy places a burden of choice on the language
user to decide which symbol to use and an additional
load on the reader to remember multiple representa-
tions of the same construct. To resolve this, one of the
symbols should be chosen to represent the construct
and the other removed from the notation. As we will
see, other principles provide clear guidelines for choos-
ing between the two alternatives.

Symbol overload (homographs)
This is the worst type of anomaly as it results in ambi-
guity and the potential for misinterpretation [16]. It
also violates one of the basic properties of the symbol
system of graphics: monosemy – this means that all
symbols should have a single meaning, defined in ad-
vance and independent of context [4]. Symbol overload
is a serious problem in i*: most of its symbols are
technically homographs. All of these occur among rela-
tionship types: there are 27 different types of semantic
relationship but only 5 visually distinct graphic links2
(Table 1). This means that, on average, each graphical
link has to represent more than 5 different types of
relationships. The level of symbol overload is primar-
ily due to the use of textual differentiation. Labels are
used to distinguish between 6 types of Actor Relation-
ships, 9 types of Softgoal Contributions and 9 types of
Softgoal Correlations3. Contextual differentiation is
also used: Actor Relationships and Contribution Rela-
tionships use the same graphical link but connect dif-
ferent types of elements. Symbol overload is a com-
mon (but suboptimal) way of dealing with excessive
graphic complexity (Principle of Graphic Economy).

Table 1. Symbol overload in i*
Graphic link Semantic relationship Overload

Actor association (6 types)

Contribution (9 types)
14

Correlation (9 types) 8

Decomposition 0

Means-end 0

D Strategic dependency 0

5 27 22

Symbol excess and symbol deficit
There is no symbol excess or symbol deficit in i*.
However, absence of symbol deficit is not necessarily a

2 Two symbols are visually distinct if they have a different value

for at least one visual variable. This is based on the concept of
visual distance (see Perceptual Discriminability).

3 Alternatively, the different types of contributions and correlations
could be considered as properties of relationships (strength and
direction) so would be considered under Visual Expressiveness.

173

good thing as this is a useful technique for keeping
graphic complexity manageable. Currently, i* has ex-
cessive graphic complexity, especially for a notation
intended for use in early analysis (see Principle of
Graphic Economy).

3.3 Perceptual Discriminability
Perceptual Discriminability refers to the ease and accu-
racy with which different symbols can be differentiated
from each other. Accurate discrimination between
symbols is a prerequisite for accurate interpretation of
diagrams [39]. Discriminability is determined by the
visual distance between symbols, which is measured
by the number of visual variables on which they differ
and the size of these differences (number of percepti-
ble steps). In general, the greater the visual distance
between symbols, the faster and more accurately they
will be recognised [40]. If differences are too subtle,
errors in interpretation can result. Requirements for
discriminability are much higher for novices than for
experts [7].

Discriminability of Shapes
Of all visual variables, shape plays a privileged role in
perceptual discrimination, as it represents the primary
basis on which we classify objects in the real world.
This means that more than any other variable, shapes
used to represent different constructs should be clearly
distinguishable. Figure 5 shows the different types of
nodes used in i*. All are 2 dimensional geometric
shapes, with sometimes only very subtle differences
between them. These differences are likely to be di-
luted even further when diagrams are drawn by hand.

RoleAgentActor Position

Softgoal Goal Task

Belief
(alternative)

Belief

Resource

Actor
boundary

Figure 5. Node types in i*

In particular, the shapes used to represent Goal and
Belief are highly similar. This provides a strong reason
to use the alternative symbol (cloud) for Beliefs to re-
solve the problem of symbol redundancy (Semiotic
Clarity). A similar problem exists between Agents and
Roles: the difference between the symbols is very sub-
tle (a straight or curved line at the top or bottom of the
symbol) and not at all intuitive.

Because of the privileged role of shape in object
recognition, differences in shape tend to be interpreted
as differences in kind. For this reason, the same or
similar shapes should be used to represent the same or
similar constructs. This principle is violated where one
of the subtypes of Actor (Position) is represented by a
shape from a different shape family. To avoid giving
misleading impressions about the relationship among
these constructs, similar shapes should be used to rep-
resent all actor subtypes. A possible solution to this
problem is discussed under Graphic Economy. A simi-
lar issue exists with Goals and Softgoals: shapes from
different families are used to represent these concepts
when Softgoal is a subtype of Goal (or in TROPOS,
Hardgoal and Softgoal are specialisations of an abstract
metaclass Goal [6]). A better solution would be to use
the same shape with a secondary visual variable to
distinguish between them (a possible solution to this
problem is discussed in Perceptual Directness).

Strategic Dependencies
Strategic dependencies are represented by lines with
the letter “D” attached to each side of the dependency
(Figure 6). The orientation of the letters defines the
direction of the dependency. This convention is one of
the most distinctive (and peculiar) characteristics of the
i* visual notation and makes i* diagrams almost imme-
diately recognisable. However, it is not particularly
effective as a graphical representation technique:
• The shape of the letter “D” is too symmetrical,

making it perceptually difficult to identify the di-
rection of the dependency. The fact that “D”s are
attached to both sides of the dependency exacer-
bates this (e.g. compare Figure 6 and Figure 7).

• Using “D”s on both sides of each dependency cre-
ates visual noise: i* diagrams are unnecessarily
cluttered by the number of “D”s.

Actor 1 Actor 2

Softgoal
dependency

Goal
dependency

Task
dependency

vulnerability commitment

Resource
dependency

Figure 6. Strategic Dependencies in i*: how many
vulnerabilities does each actor have? Conscious effort is
required to determine the orientation of the “D”s.

174

Dependencies could be represented more clearly using
conventional arrows, making sure to use a different
type of arrow to those already used in i* (Figure 7).
This resolves all the discriminability problems identi-
fied above and also supports Perceptual Directness as
arrows are universally understood as a symbol of direc-
tionality dating back to primitive times [14, 37]
whereas the “D”s always require explanation to new
users.

Actor 1 Actor 2

Softgoal
dependency

Goal
dependency

Task
dependency

vulnerability commitment

Resource
dependency

Figure 7. Strategic Dependencies (suggested
improvement): how many vulnerabilities or commitments
does each actor have? This can be easily determined by the
presence or absence of arrowheads.

Textual differentiation
Textual differentiation is commonly used in UML to
distinguish between relationship types. However, this
is not a graphic design practice that should be emu-
lated, as it is less cognitively effective [31]. As dis-
cussed under Semiotic Clarity, textual differentiation
results in symbol overload: symbols that are differenti-
ated only by labels have zero visual distance and are
technically homographs. It also reduces discriminabil-
ity as it relies on slower, sequential, cognitive proc-
esses [31]. To maximise discriminability, symbols
should be differentiated using visual variables so that
differences can be detected automatically using percep-
tual processes.

i* uses textual differentiation of relationships to an
even greater extent than UML: around 90% of relation-
ship types are differentiated in this way (see Figure 8
for an example). Textual differentiation of symbols is a
common symptom of excessive graphic complexity, a
problem that i* and UML both suffer from: however
there are better ways of dealing with this than resorting
to such measures (Graphic Economy).

Figure 8. Actor relationships in i* [17]

Labels play a critical role in diagrams, as they are used
to differentiate between symbol instances (tokens)
and define their correspondence to the real world do-
main. Using labels to differentiate between symbol
types (language level) rather than symbol instances
(diagram level) therefore confounds their role in dia-
grams. It also precludes the use of user-meaningful and
domain-relevant labels for relationships. This is not to
say that text should never be used in visual notations.
Text can be usefully used for redundant coding, to
reinforce and clarify meaning (Principle of Dual Cod-
ing), but should never be used as the sole basis for dis-
tinguishing between symbols.

3.4 Complexity Management
Managing complexity is an important issue in RE [9,
22] and also in visual representation: a well-known
problem with visual notations is that they do not scale
well [10]. It is especially important for notations de-
signed for communication with end users to have ef-
fective complexity management mechanisms as non-
experts are less equipped to deal with complexity. Cur-
rently, i* lacks effective complexity management
mechanisms, which means that problems must be rep-
resented as single monolithic diagrams, no matter how
complex they become (Figure 9). Without this, i*
stands little chance of being adopted in industrial pro-
jects, where complexity management represents one of
the greatest challenges [12, 15]. One of the few empiri-
cal evaluations of i* [13] identified this as one of its
most serious limitations in practice.

Figure 9. Complexity Management: i* lacks complexity
management mechanisms (diagram from [41]).

175

To effectively represent complex situations, visual no-
tations need to provide mechanisms for modularising
and hierarchically structuring diagrams. Experimental
studies show that this can improve end user under-
standing of RE diagrams by more than 50% [29].
DFDs provide one of the earliest examples of how to
use such mechanisms to manage complexity of dia-
grams, which may partly explain their remarkable lon-
gevity in practice despite their well-known semantic
limitations. UML Statecharts and Activity Diagrams
also provide examples of modularisation and hierarchi-
cal structuring in visual notations.

i* currently lacks modularisation mechanisms of any
kind. It provides limited hierarchical structuring (Stra-
tegic Rationale and Strategic Dependency diagrams
define two levels of abstraction), but to be most effec-
tive, multiple levels of decomposition should be pro-
vided depending on the complexity of the underlying
model.

3.5 Perceptual Directness
Perceptual directness refers to the use of graphical rep-
resentations whose appearance suggests their meaning.
While Perceptual Discriminability simply requires that
symbols be different from each other, this principle
requires that they provide clues to their meaning. Per-
ceptually direct representations reduce cognitive load
through built-in mnemonics: their meaning can be ei-
ther perceived directly or easily learnt [35]. Such rep-
resentations speed up recognition and improve intelli-
gibility, especially to naïve users [7, 27].

i* currently makes very little use of perceptual direct
representations. This is surprising for a notation in-
tended for early analysis, given the well-known advan-
tages of such representations for communicating with
novices. Most symbols in i* are abstract geometrical
shapes that don’t convey anything about the constructs
they represent: their meaning is purely conventional
and must be learnt. Ironically, the only exception is a
synograph: the cloud (the alternative symbol for Be-
lief) is a widely recognised convention for expressing
inner thoughts and feelings (the ubiquitous “thought
bubble”). This provides another reason to choose this
as the standard symbol for Belief to resolve the prob-
lem of symbol redundancy (Semiotic Clarity).

The central constructs in i* are the four dependency
types: Goals, Softgoals, Tasks and Resources. Cur-
rently, the symbols used for these are neither dis-
criminable nor mnemonic. Figure 10 shows some more
perceptually direct symbols that could be used: the
Task shape suggests motion or action, the (3D) Re-
source shape suggests a tangible object, while a foot-

ball is used to represent both Goals and Softgoals4. The
dotted outline of Softgoals suggests “fuzziness”. These
are not perceptually immediate in the strict sense that
a novice reader could guess their meaning, but are
more mnemonic than the abstract geometrical shapes
currently used. They are also more discriminable and
solve the problem of shape inconsistency identified in
Perceptual Discriminability: Goals and Softgoals now
have the same shape and are differentiated by a secon-
dary visual variable (brightness).

ResourceTask Goal Softgoal

Figure 10. More perceptually direct symbols for

dependency types

Iconic (pictorial) representations
Icons (mimetic symbols, pictographs) are symbols
which perceptually resemble the concepts they repre-
sent [34]. Empirical studies show that replacing ab-
stract shapes with icons improves understanding of RE
models by novices [27]. They also improve likeability
and accessibility: a pictorial representation appears less
daunting to novices than comprised only of abstract
symbols [3, 35]. i* currently includes no iconic repre-
sentations which makes diagrams look rather dull and
technical compared to other techniques used in early
analysis. For example, UML Use Cases make limited
use of icons while rich pictures [8] consist entirely of
pictorial representations (Figure 11).

Figure 11. Rich pictures [8]

An obvious way to increase the iconicity of i* diagrams
would be to use stick figures for actors (à la Use

4 Cultural differences about the meaning of the word football would

probably require “rugby” and “soccer” dialects of this notation.

176

Cases). This would increase their discriminability from
other constructs (Perceptual Discriminability) but
would make it much more difficult to distinguish be-
tween the different subtypes of actors (this is discussed
further in Graphic Economy). A more radical proposal
would be to replace the entire i* symbol set by an
iconic vocabulary (à la rich pictures).

3.6 Visual Expressiveness
The visual expressiveness of a notation is defined by
the number of different visual variables used and the
range of values (capacity) used of each. This measures
utilisation of the graphic design space. Using a variety
of visual variables results in a perceptually enriched
representation which maximises cognitive effective-
ness. Currently, i* uses only two visual variables:
shape and brightness. It also uses only two levels of
brightness (dotted vs solid lines) and a limited range of
shapes (only abstract geometrical shapes): in particular,
iconic and 3D shapes are not used which are generally
more perceptually and cognitively effective [3, 21, 39].
This means that i* uses only a fraction of the graphic
design space.

Use of colour
Colour is one of the most cognitively effective of all
visual variables: the human visual system is highly
sensitive to variations in colour and can quickly and
accurately distinguish between them [25, 40]. How-
ever, if not used carefully, it can undermine communi-
cation. Currently, colour is used informally and incon-
sistently in i*. Most examples in the i* Guide use green
fill for shapes and blue text for labels (e.g. Figure 12)
but use of colour is not mentioned in the text, making it
unclear whether this is part of the visual syntax.

Figure 12. Use of Colour in i* (from [17])

Whether this is part of the visual syntax or not, it does
not represent effective use of colour:
• All symbols are the same colour, meaning that it

plays no role in discriminating between symbols. In
other words, colour communicates no information.

• Coloured text on a coloured background reduces
understanding of text and is the worst possible
combination for both legibility and aesthetics [38].

This means that use of colour actively undermines
communication.

Colour could be used to improve both Visual Expres-
siveness and Perceptual Discriminability of i* by using
different colours (in addition to shape) to distinguish
between symbols (e.g. [26]). This is an example of
redundant coding: where multiple visual variables are
used in combination to discriminate between symbols
(see Figure 16 for an example). Like text, colour
should not be used as the sole basis for distinguishing
between symbols as it is highly sensitive to differences
in visual perception and screen/printing technologies.

Textual encoding of information
i* also uses text to define properties of relationships:
for example different dependency strengths for strate-
gic dependencies (Figure 13). This is not an issue of
Perceptual Discriminability as these represent proper-
ties of relationships rather than different relationship
types.

Actor 1 Actor 2
Committed
Dependency

O

x

Open
dependency

Critical
Dependency

O

x

Figure 13. Textual encoding of dependency strengths: O =
open, X = critical and no label = committed

Where possible, information should be encoded
graphically (i.e. using visual variables) to take maxi-
mum advantage of the power of human visual process-
ing. Figure 14 shows an example of how dependency
strengths could be encoded graphically.

Actor 1 Actor 2
Committed
Dependency

Open
dependency

Critical
Dependency

Figure 14. Graphical encoding of dependency strengths:
dotted lines for open dependencies (brightness), thick red
lines for critical dependencies (size, colour).

Because dependency strength is an ordinal property,
ordinal visual variables need to be used to encode this
information. Three additional visual variables are used
in this representation: brightness (dotted lines for open

177

dependencies), size (thick lines for critical dependen-
cies) and colour (red for critical dependencies).

3.7 Graphic Economy (less is more)
Graphic complexity refers to the number of different
symbols used in a notation: the size of its visual vo-
cabulary [32]. This is measured by the number of leg-
end entries required. This is different to visual com-
plexity as addressed by Complexity Management, as it
relates to complexity at the type (language) level rather
than at the token (diagram) level. Empirical studies
show that graphic complexity significantly reduces
understanding of RE diagrams, especially by novices
[32]. The reason is that the human ability to discrimi-
nate between perceptually distinct alternatives (span of
absolute judgement) is around 6 categories [28]: this
defines an effective upper limit for graphic complexity.
DFDs (Figure 15), ER diagrams and UML Use Case
diagrams are all within this limit.

Data storeProcess
External

Entity
Data flow

Figure 15. Graphic Economy: DFDs have a very simple
and highly discriminable visual vocabulary which supports
usability and end user communication

In contrast, i* exceeds this limit by an order of magni-
tude (almost 3 times). It has a graphic complexity of
175, compared to 4 for DFDs and 5 for ER models and
UML use cases. Such a level of graphic complexity
would be a problem for any visual notation, but par-
ticularly for one intended for use in early analysis.
Graphic complexity represents a major barrier to both
i*’s usability and its effectiveness for communication
with business stakeholders. There are three strategies
for dealing with excessive graphic complexity:

1. Reduce semantic complexity. The number of
semantic constructs is a major determinant of graphic
complexity as different constructs are usually repre-
sented by different graphical symbols. Reducing the
number of semantic constructs requires asking some
hard questions about the i* metamodel: for example, is
it really necessary to distinguish between the various
types of Actor (Role, Position, Agent)? For example,
DFDs and Use Case diagrams also incorporate all these
types of actors but don’t distinguish between them.
Such questions are beyond the scope of this paper,
which focuses on syntactic issues.

2. Introduce symbol deficit. Graphic complexity
can be reduced directly (without affecting semantics)

5 The graphic complexity of i* is artificially deflated by the high

level of symbol overload. As discussed under Semiotic Clarity,
symbol overload is a common, but cognitively ineffective, way of
dealing with excessive graphic complexity.

by introducing symbol deficit (Semiotic Clarity). This
means choosing not to show some constructs in
graphical form. Judicious use of symbol deficit is one
of the most effective ways to reduce graphic complex-
ity. For example, the question could be asked: even if it
is necessary to distinguish between Actors, Agents,
Roles and Positions at the semantic level, do we need
to distinguish between them at the syntactic (diagram-
matic) level? Removing this distinction would allow all
4 constructs to be represented by the same symbol,
which would reduce graphic complexity by 3 in a sin-
gle stroke. Further, if there is no need to distinguish
between actor subtypes, an icon could be used instead
of an abstract shape, thus increasing Perceptual Dis-
criminability and Perceptual Directness.

As a more radical proposal, i* currently uses a large
number of different contribution and correlation types.
As well as adding to graphic complexity, they also
greatly increase the visual complexity of i* diagrams
(Complexity Management): inclusion of such relation-
ships can result in a web of lines which can obscure the
dependency structure. We could ask the question: do
these need to be shown on the diagram at all? This may
seem to conflict with the recommendations of Visual
Expressiveness, but not all information needs to be
shown on the diagram: diagrams are famously good for
representing some types of information but not others
[18]. Part of the secret to using visual notation effec-
tively is knowing when not to use it [10, 35]. In par-
ticular, interactions can often be shown most effec-
tively using matrices (e.g. CRUD matrices, quality
matrices). The advantage of matrices for such purposes
is that they support more systematic analysis: a missing
link on a diagram is not as obvious as a missing cell in
a matrix. Removing contributions and correlations
from the visual notation would reduce both graphic
complexity and visual complexity (Complexity Man-
agement). Together with the removal of Actor subtypes
(described above) and symbol overload (Semiotic Clar-
ity), this would reduce graphic complexity to manage-
able levels.

3. Increase visual expressiveness. The human abil-
ity to discriminate between visual stimuli can be ex-
panded by increasing the number of visual variables on
which the stimuli differ [28] (Visual Expressiveness).
Using multiple visual variables to differentiate between
symbols can increase the human span of absolute
judgement in an (almost) additive manner.

4. Conclusion
This paper has conducted a systematic analysis of i*
visual syntax, using a set of principles for cognitively
effective visual notations. The results can be used to
improve its usability and effectiveness (especially for
communicating with end users) and remove some po-

178

tential barriers to its adoption in practice. We have
identified some serious flaws in the i* visual syntax,
and in most cases, possible ways of resolving these
problems. However, we don’t claim to have all the an-
swers and welcome ideas and suggestions (from re-
searchers or i* users) about alternative ways of address-
ing these issues.

It is beyond the scope of this paper to propose a new
visual notation for i*. However, as an example of what
is possible and as a starting point for further discus-
sion, we propose a simplified visual vocabulary for i*
based on some of the recommendations in this paper
(Figure 16) (this is not a complete symbol set as it does
not include relationship types). Note the mnemonic
colour scheme used:
• Tasks are yellow (like “sticky notes”)
• Resources are green (like natural resources)
• Softgoals are pink (suggesting softness)

Belief

ResourceTask

Actor

Goal Softgoal

Figure 16. A simplified visual vocabulary for i*

Compared to the existing symbol set (Figure 5), this is
more:
• Semiotically clear: it contains no synographs.
• Perceptually discriminable: it uses a greater variety

of shapes, redundant coding (which increases visual
distance) and exploits family resemblances among
shapes (i.e. Goal, Softgoal).

• Perceptually direct: it uses shapes and colours that
suggest the meaning of their referent concepts.

• Visually expressive: it uses three visual variables
(colour, shape, brightness) instead of only one
(shape); also, a greater range of shapes (including
iconic shapes and 3D shapes) are used.

• Graphically economical: the size of the visual vo-
cabulary is reduced by eliminating symbol redun-
dancy and introducing symbol deficit.

Such a symbol set would make i* diagrams more visu-
ally appealing and accessible for business stakeholders
and would clearly differentiate them from most other
technical-looking diagrams used in IT practice (of
which UML is a prime example).

Acknowledgment. This work is partially funded by the
Interuniversity Attraction Poles Programme, Belgian State,
Belgian Science Policy, under the MoVES project.

References
[1] Avison, D.E. and G. Fitzgerald, Information Systems

Development: Methodologies, Techniques and Tools
(3rd edition). 2003, Oxford, United Kingdom: Blackwell
Scientific.

[2] Ayala, C.P., C. Cares, J.P. Carvallo, G. Grau, Mariela
Haya, G. Salazar, X. Franch, E. Mayol, and C. Quer. A
Comparative Analysis of i*-Based Agent-Oriented Mod-
eling Languages. in Proceedings of the International
Workshop on Agent-Oriented Software Development
Methodology (AOSDM’2005). 2005.

[3] Bar, M. and M. Neta, Humans prefer curved visual ob-
jects. Psychological Science, 2006. 17(8): p. 645-648.

[4] Bertin, J., Semiology of Graphics: Diagrams, Networks,
Maps. 1983, Madison, Wisconsin, USA: University of
Wisconsin Press.

[5] Bertolini, D., A. Perini, A. Susi, and H. Mouratidis. The
TROPOS Visual Modeling Language: A MOF 1.4 Com-
pliant Metamodel. in Agent-Oriented Software Engi-
neering Technical Forum. 2005. Ljubljana, Slovenia.

[6] Bresciani, P., A. Perini, P. Giorgini, F. Giunchiglia, and
J. Mylopolous, TROPOS: An Agent-Oriented Software
Development Methodology. Autonomous Agents and
Multi-Agent Systems, 2004. 8: p. 203-236.

[7] Britton, C. and S. Jones, The Untrained Eye: How Lan-
guages for Software Specification Support Understand-
ing by Untrained Users. Human Computer Interaction,
1999. 14: p. 191-244.

[8] Checkland, P.B. and J. Scholes, Soft Systems Methodol-
ogy In Action. 1990, Chichester, England: Wiley.

[9] Cheng, B.H. and J.M. Atlee. Research Directions in
Requirements Engineering. in International Conference
on Software Engineering (ICSE07). 2007. Washington,
DC, USA: IEEE Computer Society.

[10] Citrin, W., Strategic Directions in Visual Languages
Research. ACM Computing Surveys, 1996. 24(4).

[11] Dardenne, A., A. van Lamsweerde, and S. Fickas, Goal-
Directed Requirements Acquisition. Science of Com-
puter Programming, 1993. 20: p. 3-50.

[12] Dijkstra, E.W., On the Cruelty of Really Teaching Com-
puter Science. Communications of the ACM, 1989.
32(12): p. 1398-1404.

[13] Estrada, H., A.M. Rebollar, O. Pastor, and J. Mylopou-
los. An Empirical Evaluation of the i* Framework in a
Model-based Software Generation Environment. in
CAiSE 2006 (LNCS 4001). 2006: Springer-Verlag.

[14] Frutiger, A. and A. Bluhm, Signs and Symbols: Their
Design and Meaning. 1998, New York, USA: Watson-
Guptill Publications.

[15] Ganek, A.G. and T.A. Corbi, The Dawning of the Auto-
nomic Computing Era. IBM Systems Journal, 2003.
42(1): p. 5-19.

[16] Goodman, N., Languages of Art: An Approach to a The-
ory of Symbols. 1968, Indianapolis: Bobbs-Merrill Co.

[17] Grau, G., J. Horkoff, E. Yu, and S. Abdulhadi. i* Guide
3.0. (last updated August, 2007; accessed February 10,
2009); Available from: http://istar.rwth-aachen.de/tiki-
index.php?page_ref_id=67.

[18] Green, T.R.G. and M. Petre, Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’

179

framework. Journal of Visual Languages and Comput-
ing, 1996. 7: p. 131-174.

[19] Gurr, C.A., Effective Diagrammatic Communication:
Syntactic, Semantic and Pragmatic Issues. Journal of
Visual Languages and Computing, 1999. 10: p. 317-342.

[20] Hitchman, S., The Details of Conceptual Modelling
Notations are Important - A Comparison of Relationship
Normative Language. Communications of the AIS,
2002. 9(10).

[21] Irani, P. and C. Ware, Diagramming Information Struc-
tures Using 3D Perceptual Primitives. ACM Transac-
tions on Computer-Human Interaction, 2003. 10(1): p. 1-
19.

[22] Kaindl, H., S. Brinkkemper, J.A. Bubenko, B. Farbey,
S.J. Greenspan, C.L. Heitmeyer, J.C.S.P. Leite, N.R.
Mead, J. Myopolous, and J. Siddiqui, Requirements En-
gineering and Technology Transfer: Obstacles, Incen-
tives and Improvement Agenda. Requirements Engineer-
ing, 2002. 7: p. 113-123.

[23] Larkin, J.H. and H.A. Simon, Why a Diagram is (Some-
times) Worth Ten Thousand Words. Cognitive Science,
1987. 11(1).

[24] Lynch, M., The Externalized Retina: Selection and
Mathematization in the Visual Documentation of Objects
in the Life Sciences. Human Studies, 1988. 11: p. 201-
234.

[25] Mackinlay, J., Automating the Design of Graphical
Presentations of Relational Information. ACM Transac-
tions on Graphics, 1986. 5(2): p. 110 - 141.

[26] Maiden, N.A.M., N. Kamdar, and D. Bush. Analysing I*
System Models for Dependability Properties: The Uber-
lingen Accident. in REFSQ'06. 2006. Luxembourg.

[27] Masri, K., D. Parker, and A. Gemino, Using Iconic
Graphics in Entity Relationship Diagrams: The Impact
on Understanding. Journal of Database Management,
2008. 19(3): p. 22-41.

[28] Miller, G.A., The Magical Number Seven, Plus Or Mi-
nus Two: Some Limits On Our Capacity For Processing
Information. The Psychological Review, 1956. 63: p.
81-97.

[29] Moody, D.L. Complexity Effects On End User Under-
standing Of Data Models: An Experimental Comparison
Of Large Data Model Representation Methods. in Pro-
ceedings of the Tenth European Conference on Informa-
tion Systems (ECIS'2002). 2002. Gdansk, Poland.

[30] Moody, D.L., The "Physics" of Notations: Towards a
Scientific Basis for Constructing Visual Notations in
Software Engineering. IEEE Transactions on Software
Engineering, 2009. October.

[31] Moody, D.L. and J. van Hillegersberg. Evaluating the
Visual Syntax of UML: An Analysis of the Cognitive Ef-
fectiveness of the UML Suite of Diagrams. in Proceed-
ings of the 1st International Conference on Software
Language Engineering (SLE). 2008. Toulouse, France:
Springer Lecture Notes in Computer Science.

[32] Nordbotten, J.C. and M.E. Crosby, The Effect of
Graphic Style on Data Model Interpretation. Informa-
tion Systems Journal, 1999. 9(2): p. 139-156.

[33] OMG, MOF Core specification. 2006: Object Manage-
ment Group.

[34] Peirce, C.S., Charles S. Peirce: The Essential Writings
(Great Books in Philosophy), ed. E.C. Moore. 1998,
Amherst, USA: Prometheus Books.

[35] Petre, M., Why Looking Isn't Always Seeing: Readership
Skills and Graphical Programming. Communications of
the ACM, 1995. 38(6): p. 33-44.

[36] Siau, K., Informational and Computational Equivalence
in Comparing Information Modelling Methods. Journal
of Database Management, 2004. 15(1): p. 73-86.

[37] Tufte, E.R., Beautiful Evidence. 2006, Cheshire, Con-
necticut, USA: Graphics Press.

[38] Wheildon, C., Type and Layout: Are You Communicat-
ing or Just Making Pretty Shapes? 2005, Hastings, Vic-
toria, Australia: Worsley Press.

[39] Winn, W.D., Encoding and Retrieval of Information in
Maps and Diagrams. IEEE Transactions on Professional
Communication, 1990. 33(3): p. 103-107.

[40] Winn, W.D., An Account of How Readers Search for
Information in Diagrams. Contemporary Educational
Psychology, 1993. 18: p. 162-185.

[41] Yu, E., Modelling Strategic Relationships for Process
Reengineering (PhD thesis). 1995: Department of Com-
puter Science, University of Toronto.

[42] Yu, E. Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering. in Proceedings
of the 3rd IEEE International Conference on Require-
ments Engineering (RE'97). 1997. Washington D.C.,
USA.

180

